Partial IK1 blockade destabilizes spiral wave rotation center without inducing wave breakup and facilitates termination of reentrant arrhythmias in ventricles.
نویسندگان
چکیده
It has been reported that blockade of the inward rectifier K(+) current (IK1) facilitates termination of ventricular fibrillation. We hypothesized that partial IK1 blockade destabilizes spiral wave (SW) re-entry, leading to its termination. Optical action potential (AP) signals were recorded from left ventricles of Langendorff-perfused rabbit hearts with endocardial cryoablation. The dynamics of SW re-entry were analyzed during ventricular tachycardia (VT), induced by cross-field stimulation. Intercellular electrical coupling in the myocardial tissue was evaluated by the space constant. In separate experiments, AP recordings were made using the microelectrode technique from right ventricular papillary muscles of rabbit hearts. Ba(2+) (10-50 μM) caused a dose-dependent prolongation of VT cycle length and facilitated termination of VT in perfused hearts. Baseline VT was maintained by a stable rotor, where an SW rotated around an I-shaped functional block line (FBL). Ba(2+) at 10 μM prolonged I-shaped FBL and phase-singularity trajectory, whereas Ba(2+) at 50 μM transformed the SW rotation dynamics from a stable linear pattern to unstable circular/cycloidal meandering. The SW destabilization was not accompanied by SW breakup. Under constant pacing, Ba(2+) caused a dose-dependent prolongation of APs, and Ba(2+) at 50 μM decreased conduction velocity. In papillary muscles, Ba(2+) at 50 μM depolarized the resting membrane potential. The space constant was increased by 50 μM Ba(2+) Partial IK1 blockade destabilizes SW rotation dynamics through a combination of prolongation of the wave length, reduction of excitability, and enhancement of electrotonic interactions, which facilitates termination of ventricular tachyarrhythmias.
منابع مشابه
Destabilization and early termination of spiral-wave reentry by a class III antiarrhythmic agent, nifekalant, in a perfused two-dimensional layer of rabbit ventricular myocardium.
Nifekalant (NF) is a novel class III antiarrhythmic agent that is effective in preventing recurrent life-threatening ventricular tachycardia/fibrillation (VT/VF). However, because the mechanism underlying the antiarrhythmic action of NF is unknown, we investigated the effects of NF on the dynamics of functional reentry in rabbit hearts. A 2D subepicardial myocardial layer was prepared in 21 Lan...
متن کاملDrift and breakup of spiral waves in reaction-diffusion-mechanics systems.
Rotating spiral waves organize excitation in various biological, physical, and chemical systems. They underpin a variety of important phenomena, such as cardiac arrhythmias, morphogenesis processes, and spatial patterns in chemical reactions. Important insights into spiral wave dynamics have been obtained from theoretical studies of the reaction-diffusion (RD) partial differential equations. Ho...
متن کاملMultiple mechanisms of spiral wave breakup in a model of cardiac electrical activity.
It has become widely accepted that the most dangerous cardiac arrhythmias are due to reentrant waves, i.e., electrical wave(s) that recirculate repeatedly throughout the tissue at a higher frequency than the waves produced by the heart's natural pacemaker (sinoatrial node). However, the complicated structure of cardiac tissue, as well as the complex ionic currents in the cell, have made it extr...
متن کاملMechanisms of destabilization and early termination of spiral wave reentry in the ventricle by a class III antiarrhythmic agent, nifekalant.
Nifekalant (NF) is a novel class III antiarrhythmic agent that is effective in preventing life-threatening ventricular tachycardia/fibrillation (VT/VF). We investigated mechanisms of destabilization and early termination of spiral-type reentrant VT by NF in a two-dimensional subepicardial myocardial layer of Langendorff-perfused rabbit hearts (n = 21) using a high-resolution optical action pote...
متن کاملTurbulent electrical activity at sharp-edged inexcitable obstacles in a model for human cardiac tissue.
Wave propagation around various geometric expansions, structures, and obstacles in cardiac tissue may result in the formation of unidirectional block of wave propagation and the onset of reentrant arrhythmias in the heart. Therefore, we investigated the conditions under which reentrant spiral waves can be generated by high-frequency stimulation at sharp-edged obstacles in the ten Tusscher-Noble...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Heart and circulatory physiology
دوره 311 3 شماره
صفحات -
تاریخ انتشار 2016